Semantic sentiment analysis in opinion articles
Abstract
The present study, which is developed in the interface between linguistics and computer science within the framework of sentiment analysis, aims at making a computational analysis of opinion articles in the area of economics and finance. The main objectives of the study are: i) to determine the semantic orientation of text segments that express opinion by annotating the polarity (positive or negative) and the strength (scale from -3 to 3) of nouns and adjectives, and ii) to verify if a specific lexicon for the area of economics and finance has advantages in automatic annotation of sentiment over a general lexicon. To achieve these objectives, a corpus of 45 texts was selected and analyzed in 2 phases, by annotators with different training. First, a sample of 10 texts was annotated by linguists, co-authors of this paper, with the objective of developing a linguistic annotation model to ascertain the polarity and strength of words in opinion articles and extract the relevant words for this area of study. Then, a set of 35 texts was annotated by university students, replicating the annotation model developed during the first phase. Based on the linguistic annotation, the computer science team tried to establish to what extent a general sentiment lexicon for Portuguese - SentiLex - was sufficient to extract the sentiment of a sentence in a satisfactory manner or whether EconoLex, a specific sentiment lexicon, would be more efficient. The specific lexicon includes terms and multiword expressions that are relevant to the area of economics and finance and to Portuguese language, and it was developed by the authors of this study. The data was analyzed according to a blending methodology, qualitative and quantitative. The results of the analysis allow us to consider the following items as contributes of this study: i) the development of a linguistic annotation model for the analysis of the polarity and strength of the lexicon, especially of nouns and adjectives; ii) the key role, though not exclusive, of the adjectives to determine the polarity of opinion segments of the corpus articles; iii) the creation of a new specific sentiment lexicon for Portuguese in the area of economics and finance; iv) the improvement of the computational performance of EconoLex⨁SentiLex in relation to SentiLex regarding the performance in automatic annotation of sentiment. In spite of these positive results, there are some limitations, which we intend to overcome in the continuity of this interdisciplinary work, namely a more detailed linguistic analysis of the word classes that we studied, the consideration of other elements/ linguistic structures that are essential to ascertain the sentiment in NP/sentence, the extension of the corpus, the expansion of the specific lexicon of the area of economics and finance and the improvement of automatic methods for identifying evaluative words in texts of opinion and for assigning them polarity and strength.
Downloads
References
Abalada, S., Cabarrão, V. & Cardoso, A. 2010. Proposta de Classificação Semântica de Unidades Lexicais Multipalavra Nominais. In: Textos Seleccionados do XXV Encontro Nacional da APL. Porto, 81-94.
Adam, J-M. 1997. Unités rédactionnelles et genres discursifs : cadre général pour une approche de la presse écrite. Pratiques, 94: 3-18.
Almatarneh, S. & Gamallo, P. 2018. A Comparative Study of Polarity Lexicons to Identify Extreme Opinions. In: Proceedings of SNAMS 2018, Fifth International Conference on Social Networks Analysis, the Second International Workshop on Advances in Natural Language Processing (ANLP 2018) Management and Security. Valencia, Spain, 296-301.
Antunes, P. 2015. Sentiment Analysis in Financial News. Dissertação de Mestrado. Porto: FEP.
Baccianella, S., Esuli, A. & Sebastiani, F. 2010. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In: Proceedings of the Seventh conference on International Language Resources and Evaluation. Valletta, Malta, 2200-2204.
Benamara, F., Taboada, M. & Mathieu, Y. 2017. Evaluative Language Beyond Bags of Words: Linguistic Insights and Computational Applications. Computational Linguistics. 43(1): 201-264.
Biber D, Finegan E. 1989. Styles of stance in English: lexical and grammatical marking of evidentiality and affect. Text. 9: 93–124.
Calzolari, N. , Fillmore, C. J., Grishman, R., Ide, N., Lenci, A. , MacLeod, C. & Zampolli, A. 2002. Towards Best Practice for Multiword Expressions in Computational Lexicons. In: Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC 2002). Las Palmas, Canary Islands, 1934-1940.
Cambria, E. & Hussain, A. 2015. Sentic computing: a common-sense-based framework for concept-level sentiment analysis. Vol. 1. Dordrecht: Springer.
Carvalho, P. & Silva, M.J. 2015. Sentilex-pt: principais características e potencialidades. In: A. Simões, A. Barreiro, D. Santos, R. Sousa-Silva & S.E.O. Tagnin (Eds.). Linguística, Informática e Tradução: Mundos que se Cruzam. Oslo Studies in Language. 7(1): 425–438.
Carvalho, P., Sarmento, L., Silva, M. J., Oliveira, E. 2009. Clues for Detecting Irony in User-Generated Contents: Oh...!! It’s “so easy” ,-). In: Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis for mass opinion. Hong Kong, China, 53-56.
Charaudeau, P. 2006. Discours journalistique et positionnements énonciatifs. Frontières et derives. Semen, 22. 1-9. Retirado, a 20 de maio de 2017, da Internet: https:// journals.openedition.org/semen/2793.
Cunha, G. X. 2012. A articulação discursiva do gênero artigo de opinião à luz de um modelo modular de análise do discurso. Filologia Linguística Portuguesa. 14(1): 73- 97.
Das, S. & Chen, M. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In: Proceedings of the 8th Asia Pacific Finance Association Annual Conference (APFA 2001), Bangkok, Thailand.
Dave, K., Lawrence, S. & Pennock, D.M. 2003. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In: Proceedings of International Conference on World Wide Web (WWW-2003).
Ekman, P. 1999. Basic emotions. In: T. Dalgleish & M. Power (Eds.). Handbook of cognition and emotion. Chichester: John Wiley & Sons, 45-60.
Ferreira, I. 2013. Para o estudo semântico dos adjetivos adverbiais temporais e aspetuais do Português Europeu. Tese de Doutoramento. Porto: FLUP.
Fiorin, J.L. 2007. Paixões, afetos, emoções e sentimentos. CASA: Cadernos de Semiótica Aplicada. 5 (2), 1-15. Retirado, a 20 de setembro de 2017, da Internet: file:///C:/Users/ Fatima%20Silva/Downloads/541-1486-1-PB%20(1).pdf.
Forte, A.C. & Brazdil, P. 2016. Determining the Level of Clients’ Dissatisfaction from Their Commentaries. In: J. Silva, R. Ribeiro, P. Quaresma, A. Adami & A. Branco (Eds.). Computational Processing of the Portuguese Language. PROPOR 2016. Lecture Notes in Computer Science. Vol. 9727. New York: Springer, 74-85.
Freitas, C. (2013). Sobre a construção de um léxico da afetividade para o processamento computacional do português. Revista Brasileira de Linguística, 13 (4), 1031-1059.
Goldberg, A. & Zhu, J. 2006. Seeing stars when there aren’t many stars: Graph-based semisupervised learning for sentiment categorization. In TextGraphs: HLT/NAACL Workshop on Graph-based Algorithms for Natural Language Processing, 45-52.
Gómez Molina, J. R. 2004. Las unidades léxicas en español. Carabela, 56: 27-50.
Hung, C., & Lin, H-K. 2013. Using objective words in SentiWordNet to improve sentiment classification for word of mouth. IEEE Intelligent Systems. 28(2): 47-54.
Hunston S, Thompson G. 2000. Evaluation: an introduction. In: S. Hunston & G. Thompson (Eds.). Evaluation in Text: Authorial Distance and the Construction of Discourse, Oxford: OUP. 1–27.
Kodratoff, Y. & Michalski, R.S. 2014. Machine learning: an artificial intelligence approach. Vol. 3. Massachusetts: Morgan Kaufmann.
Levin, B. 1993. English Verb Classes and Alternations: A Preliminary Investigation. Chicago: University of Chicago Press.
Li, G. & Liu, F. 2012. Application of a clustering method on sentiment analysis. Journal of Information Science. 38(2), 127–139.
Liu, B. 2012. Sentiment Analysis and Opinion Mining: Synthesis Lectures on Human Language Technologies. California: Morgan & Claypool Publishers.
Liu, B. 2015. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge: Cambridge University Press.
Marques-Lucena, M., Sarraipa, J., Fonseca, J., Grilo, A., Jardim-Gonçalves, R. 2015. Framework for customers’ sentiment analysis. In: P. Angelov, K.T. Atanassov, L. Doukovska, M. Hadjiski, V. Jotsov, J. Kacprzyk, N. Kasabov, S. Sotirov, E. Szmidt, S. Zadrożny (Eds.). Intelligent ystems’2014. Advances in Intelligent Systems and Computing. Vol 322. Cham: Springer, 849-860.
Marrafa, P. 2004. Extending WordNets to Implicit Information. In: M. T. Lino, M. F. Xavier, F. Ferreira, R. Costa & R. Silva (Eds.). Proceedings of LREC 2004 - International Conference on Language Resources and Evaluation. Paris: ELRA - European Language Resources Association, 1135-1138 (CD-ROM).
Martin, J.R. & White, P.R.R. (2005). The Language of Evaluation. New York: Palgrave. Mathieu, Y. 2005. Annotation of Emotions and Feelings in Texts. In: J. Tao, T. Tan & R. W. Picard (Eds.). Affective Computing and Intelligent Interaction. First International Conference, ACII 2005, Beijing, China, October 22-24, 2005, Proceedings, 350-357.
McCarthy, M. 1990. Vocabulary. Oxford: Oxford University Press.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. & Dean, J. 2013. Distributed representations of words and phrases and their compositionality. In: C. Burges, L. Bottou, M. Welling, Z. Ghahramani & K.Q. Weinberger (Eds.). Advances in Neural Information Processing Systems 26 (NIPS 2013), 3111-3119.
Nasukawa, T. & Yi, J. 2003. Sentiment analysis: Capturing favorability using natural language processing. In: Proceedings of the 2nd international conference on Knowledge capture. New York: ACM, 70-77.
Nattinger, J. R., & DeCarrico, J. S. 1992. Lexical phrases and language teaching. Oxford: Oxford University Press.
Neviarouskaya, A., Prendinger, H. & Ishizuka, M. (2009). Semantically distinct verb classes involved in sentiment analysis. In: Weghorn, H. & Isaías, P. (Eds.). Proceedings of the IADIS International Conference on Applied Computing, 27-34. Retirado, a 28 junho de 2017, da Internet: http://www.iadisportal.org/applied-computing-2009- proceedings.
Pang, B. & Lee, L. 2008. Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval. 2(1-2): 1-135. Retirado, a 28 junho de 2017, da Internet: http://www.cs.cornell.edu/home/llee/omsa/omsa.pdf.
Pang, B., Lee, L., & Vaithyanathan, S. 2002. Thumbs up?: Sentiment classification using machine learning techniques. EMNLP ‘02 - Proceedings of the ACL-02 conference on Empirical methods in natural language processing. Vol.10, 79-86.
Pennington, J., Socher, R. & Christopher, M. 2014. Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing. Stroudsburg: The Association for Computational Linguistics, 1532-1543.
Polanyi, L. & Zaenen, A. 2006. Contextual valence shifters. In: J.G. Shanahan, Y. Qu, Yan & J. Wiebe (Eds.). Computing attitude and affect in text: Theory and applications. Dordrecht: Springer, 1-10.
Ranchhod, E. M. M. 2003. O Lugar das Expressões Fixas na Gramática do Português. In: I. Castro & I. Duarte (Eds.). Razões e Emoção. Miscelânea de estudos oferecida a Maria Helena Mira Mateus. Lisboa: Imprensa Nacional - Casa da Moeda, 239-254.
Ravi, K. & Ravi, V. 2015. A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge-Based Systems. 89: 14-46.
Rodrigues, R. H. 2005. Os gêneros do discurso na perspectiva dialógica da linguagem: a abordagem de Bakhtin. In: J. L. Meurer, A. Bonini & D. M. Roth (Eds.). Gêneros: teorias, métodos, debates. São Paulo: Parábola Editorial, 154–183.
Russell, J.A. 1980. A circumplex model of affect. Journal of Personality and Social Psychology. 39: 1161-1178.
Sag, I.A., Baldwin, T., Bond, F., Copestake, A. & Flickinger D. 2002. Multiword Expressions: A Pain in the Neck for NLP. In: Gelbukh A. (Ed.) Computational Linguistics and Intelligent Text Processing. CICLing 2002. Lecture Notes in Computer Science.Vol. 2276. Berlin: Springer, 189-206.
Silva, F, Leal, A., Silvano, P., Ferreira, I. & Oliveira, F. 2018. Crítica cinematográfica: análise linguístico-textual. In: J. Veloso, P. Silvano, J. Guimarães & R. Sousa e Silva (Eds.). A linguística em diálogo: volume comemorativo dos 40 anos do Centro de Linguística da Universidade do Porto. Porto: FLUP / CLUP, 431-458.
Silva, F., Leal, A., Ferreira, I., Oliveira, F. & Silvano, P. 2015. Marcas linguísticas no texto de apreciação crítica. In Literatura e Gramática: um diálogo infinito. Lisboa: Associação de Professores de Português.
Silva, M. J. & Team, R. 2011. Notas sobre a realização e qualidade do twitómetro. Technical report. Lisboa: FCUL/LASIGE.
Silva, M. J., Carvalho, P. & Sarmento, L. 2012. Building a Sentiment Lexicon for Social Judgement Mining. In: H. Caseli, A. Villavicencio, A. Teixeira & F. Perdigão. (Eds.). International Conference on Computational Processing of the Portuguese Language (PROPOR). Berlin: Springer, 218-228.
Silva, M. J., Carvalho, P., Costa, C. & Sarmento, L. 2010. Automatic Expansion of a Social Judgment Lexicon for Sentiment Analysis. Relatório Técnico: DI–FCUL–TR–2010–08. Lisboa: FCUL.
Taboada, M. & Trnavac, R. 2013. Nonveridicality and Evaluation Theoretical, Computational and Corpus Approaches. Brill Academic.
Taboada, M. 2016. Sentiment Analysis: An Overview from Linguistics. Annual Review of Linguistics 2016. 2(1): 325-347.
Taboada, M., Anthony, & Voll, K. 2006. Methods for creating semantic orientation dictionaries. In: N. Calzolari, K. Choukri, A. Gangemi, B. Maegaard, J. Mariani, J. Odijk & D. Tapias (Eds.). Proceedings of Fifth International Conference on Language Resources and Evaluation (LREC 2006). Genoa, Italy, 427-432.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K. & Stede, M. 2011. Lexicon-Based Methods for Sentiment Analysis. Association for Computational Linguistics. 37(2): 267-307.
Thornbury, S. 2007. How to teach vocabulary. Malaysia: Pearson, Longman.
Tong, R. M. 2001. An operational system for detecting and tracking opinions in on- line discussion. In: Working Notes of the SIGIR Workshop on Operational Text Classification. New Orleans, 1-6.
Turney, P. D. 2002. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, 417-424.
Witten, I. H. & Frank, E. 2016. Data Mining: Practical machine learning tools and techniques. San Francisco: Morgan Kaufmann.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Linguística: Revista de Estudos Linguísticos da Universidade do Porto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.